Control of Sextupolar Modes

J. Bengtsson, Y. Luo, N. Malitsky, and T. Satogata 3/17/06

1.0 Theory

1.1 Control of the First Order Lie Generators

The one-turn map can be written

$$\mathcal{M} = \mathcal{A}^{-1} e^{:h_3 + h_4 + h_5 + \dots} \mathcal{R} \mathcal{A},$$

$$h_3 = \sum_{|I| = n} h_I h_X^{+i_1} h_X^{-i_2} h_Y^{+i_3} h_X^{-i_4} \delta^{i_5},$$

$$|I| = n$$

$$(EQ 1)$$

$$h_X^{\pm} = \sqrt{2J_X} e^{\pm \phi_X} = \sqrt{2J_X} \cos(\phi_X) \pm \sqrt{2J_X} \sin(\phi_X) = x \mp i \rho_X$$

There are two chromatic terms

$$h_{11001} = \frac{1}{4} \sum_{i=1}^{N} [(b_{2i}L) - 2(b_{3i}L)\eta_{xi}]\beta_{xi}, \qquad h_{00111} = -\frac{1}{4} \sum_{i=1}^{N} [(b_{2i}L) - 2(b_{3i}L)\eta_{xi}]\beta_{yi}$$
 (EQ 2)

and 5 geometric

$$h_{10110} = h_{01110}^* = \frac{1}{4} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{1/2} \beta_{yi} e^{i\mu_{yi}}, \qquad h_{21000} = h_{12000}^* = -\frac{1}{8} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{3/2} e^{i\mu_{xi}},$$

$$h_{30000} = h_{03000}^* = -\frac{1}{24} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{3/2} e^{i3\mu_{xi}},$$

$$i = 1$$

$$h_{10020} = h_{01200}^* = \frac{1}{8} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{1/2} \beta_{yi} e^{i(\mu_{xi} - \mu_{yi})},$$

$$h_{10200} = h_{01020}^* = \frac{1}{8} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{1/2} \beta_{yi} e^{i(\mu_{xi} + \mu_{yi})}$$

$$h_{10200} = h_{01020}^* = \frac{1}{8} \sum_{i=1}^{N} (b_{3i}L) \beta_{xi}^{1/2} \beta_{yi} e^{i(\mu_{xi} + \mu_{yi})}$$

Starting from the $M \times N$ system

$$\overline{\Delta h} = T(\overline{\Delta b_3 L}) \tag{EQ 4}$$

where

$$\overline{\Delta h} = \left[\Delta h_1, \Delta h_2, ..., \Delta h_M \right]^{\mathrm{T}}, \qquad \overline{(\Delta b_3 L)} = \left[(\Delta b_3 L)_1, (\Delta b_3 L)_2, ..., (\Delta b_3 L)_N \right]^{\mathrm{T}}$$
 (EQ 5)

the inverse is obtained by SVD

$$\overline{(\Delta \boldsymbol{b}_3 \boldsymbol{L})} = \boldsymbol{T}^{-1} \overline{\Delta \boldsymbol{h}}$$
 (EQ 6)

To summarize, the "sextupole response matrix" can be computed off-line from the linear optics. It can then be implemented on the control system for effective control of the individual Lie generators, i.e. "smart knobs".

1.2 Measurement of the Lie Generators

The n-turn map is

$$\dot{\vec{x}}_n = \mathcal{M}^{n \to 0}$$
 (EQ 7)

For example, the generator

$$h_{30000}h_{x}^{+3} + \text{c.c.} \equiv A_{30000}e^{i\phi_{30000}}h_{x}^{+3} + \text{c.c.}$$

$$= 2A_{30000}(2J_{x})^{3/2}\cos(3\phi_{x} + \phi_{30000})$$
(EQ 8)

leads to

$$J_{\mathbf{X}}(\mathbf{n}) = J_{\mathbf{X}} + \frac{3A_{30000}(2J_{\mathbf{X}})^{3/2}}{\sin(3\pi v_{\mathbf{X}})} \sin[\phi_{30000} + 3(\phi_{\mathbf{X}} - \pi v_{\mathbf{X}} + \mathbf{n}2\pi v_{\mathbf{X}})]$$
 (EQ 9)

Conclusion, by collecting turn-by-turn data from two adjacent BPMs, the linear invariant can be computed, Fourier analyzed, and...

2.0 Implementation

- 1. Sextupole response matrix and check by Tracy-2 simulation. Yun/Johan
- 2. Smart knobs for ditto. Nikolay.
- 3. Off-line analysis of the collected data. Johan
- 4. On-line data analysis tool. Todd